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Errata

Recently, Technical Report RADC-T - dated September 1962, and
entitled "Development of Non-Parametric Techniques to the Reliability

Testing of Air Force Ground Electronic Equipment", and written by T. Burke
and D. Goss, and prepared for the Rome Air Development Center, USAF,
GCriffiss Air Force Base, New York was sent to you.

Attach this errata sheet containing the three notices listed below to
the inside of the front cover of the above report. (in accordance with the
requirements of RADC 3002C, sectiom 3.5.2)

1. PATENT NOTICE: When government drawings, specifications, or other
data are used for any purpose other than in connection with a definitely
related Government procurement operation, the United States Government
thereby incurs no responsibility nor any obligation whatsoever and the fact
that the Government may have formulated, furnished, or in any way supplied
the said drawings, spacifications or other data is not to be regarded by
jmplication or otherwise as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manmufacture,
use, or sell any patented invention that may in any way be related thereto.

2. DDC NOTICE: Qualified requestors may obtain coples of this report
from the DDC Document Service Center, Cameron Station, Alexandria, Virginia.
DDC Services for the Department of Defense contractors are available through
the "Field of Interest Register" on a "need-to-know" certified by the

! cognizent military agency of their project or contract.

3, OTS NOTICE: This report has been released to the Office of

2 Technical Services U'. S. Department of Commerce, Washington 25, D.C., for

sale to the genersl publiec.
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FORMARD

This effort had as its purpose the study of:

(a) Randomization Tests of Statistical Inference. These tests
may be utilised to minimise the risk of biased results resulting from
non-random sets of failure data. Since, generally, reliability
estimations must be based upon the assumption that the occurring
feilures are random in nature, such tests of randommess may be con-
gsidered as a necessity.

(b) Statistical Decision Functions. These functions may be
used to determine the advisability of terminating reliability tests in
the presence of relatively sparse data. From decision functions, risk
functions can be developed which may be capeble of mathematically
equating potential costs to each possible alternate decision (accept,
reject, or continue test). '

In the area of randomization tests the contractor has investi-
gated and modified (for reliability test purposes) two testing procedures,
the runs test and the serial correlation test.

Of the two, the runs test is the easiest to apply (can be
implemented using s simple table). The runs test can also be used to
determine whether or not a modification or redesign of an equipment has
resulted in a significant improvement in reliability.

The serial correlation test, although more involved than the
runs test, can readily be applied if one is willing to set up and solve
a series of elementary statistical relationships.

In the area of statistical decision functions the contractor has
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performed a literature search and analysis of all available data on
the subject. The conclusion was reached that it may well be possible
to develop a risk function for reliability test purposes. However,
before this is accomplished more lmowledge concerning appropriate
decision functions and their practical ramifications must be acquired.
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ABSTRACT

This is a study of several randomisation tests of statistical
inference. For testing the randommess of a sequence of obeervations,
the Runs Test and the Serial Correlation Test are discussed.

Some aspects of decision theory are discussed. Among the
topics considered are definitions, basic principles, the pay-off matrix,
utility theory, and principles of choice. The report concludes with
critical comments on utility theory and principles of choice.
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Development of Non-Parametric Techniques
to the
Reliability Testing of Air Porece Ground Electronic Equipment

INTRODUCTION
Randomization tests are necessary to avoid biased results when
the experiment (as is almost always the case) is based on conc}iti’ona of
random sampling. If there is any slight suspicion that the observations
do not form a random set ‘when taken over some time interval,'lit s im-
- portant to test for nnddmeaa before :a'pplying any statiétiqal t?ébnique.
"I.‘-hé Runs Test and the Serial Correh*,ion Test, which can be uaedto
a:é.t.ermine a lack of randormmess in seqtié,nces of obégmtione ifsuch a
" lack exists, are discnagéd'. These tests are nonparametric siﬁqe they can
| ‘be used when the mderiyiné frequency.i‘s ur;known. Exanples ;;e;giyen thch
"illustrate how the Runs Test can be used to test for the ide'njé_;i':y"-;bf two
distributions. , ' Yo ' ‘
The works of von Neumann and Morgenstern (1944, 1947) ‘and Wald

(1950) concerning the tﬁeory of games and the theory of atdtist;ic#l
decisions stimulatad much of the basic research in decision theory during
the -hst decade. In the second part of this report it is our purpose to
discuss some of the basic concepts of this theory. Decision functions
can often be used to determine a rule for carrying out the reliability
experimentation and for making a terminal decision. In this report, we
will point out the difficulties encountered in bridging the gap between

theory and practice.



DISCUSSION
1. Randomisation Tests

a) Random Sampling

A set of elements which have a common measurable or observable
characteristic is usually called the population or the universe. A
subset of these elements, chosen in any manner, is called a sample of
the population.

One type of population consists of elements or observations
which actually exist. Examples of this type of universe might be:
(a) all the registered voters of Philadelphia and (b) the seven members
of the Board of Education of a certain city. In studying some
characteristic of the voters of Philadelphia, it would be impractical
to contact every voter whereas it would be reasonable to contact only
a s\;bset or sample of this population. Usually it is possible té obtain
adequate information for most purposes from relatively small samples.
In the case of the Board of Education members, because of the small
number, it probably would be easy to measure every element (individual)
of the population. Both of the above were illustrations of finite
populations. A second type of population, usually involved in experi-
ments, is obtained if we consider all the hypothetical measurements ¢
the weight of an object. Also, the population consisting of all the
hypothetical tosses of a die is a infinite populetion since "all
possible tosses" can never be made.

The purpose of a statistical test is to make some generalization
ﬂhe meantime between failures is X hourg? about & population from a

subset or sample of the population. The way we choose this sample plays
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an important pert in 'yhe degree of confidence which we can put on the
results of the experiment. If some individual elements of our popula
tion are more likely to be chosen than others, then the sample is certainly
biased. Whether the .population is finite or infinite, we would like every
element of the population to have am equsl chance of being included in
the sample. A sample satisfying this éond:ltion is called a random sample.
This definition implies that some device must be used so that s{lection
of elements of the sample be left to chance. However, in relhbj.lity
tests aimed at verifying a mean time to failure, after each failure, the
time to failure is recorded, the equipment is repaired and then put back
on test. The assumption is that failure i and failure i+] are independent.
It is important to test this assumption since most techniques for testing
. statistical hypotheses assume a random set from some population. In
particular, in the median and other tests which involve sequences of ob-
servations, it is assumed that these sequences are random. Therefors,
before applying these statistical methods, some methods must be used to
test the randomness of the sequence. The following two sections discuss
such techniques.

b) The Run Test

One of the most useful and essiest to apply tests of the random-
ness of a sequence is the runs test. In order to 1llustrate the use of
this test consider the following set of times to failure of a certain
electronic equipment gathered over a period of several months:
(1) n, 27, 37, 41, 3, 36, 28, 23, 41, 0, I, 24, 19, 26, X,

35, 25, 28, 40, 23.
We then found the median. In this case, since we have 10 elements above
and including 31 and 10 elements below and including 30, the median is
30.5. We now replace each mean time bestween failures by + if above the
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median and by -~ if below the medlan of 30.5 This ylelds the following
sequence:

(11) tottthoat et aawtteota

A run is defined as a sequence of identical letters or symbols which

is followed and preceded by different letters or no symbols at all.

In the above sequence of + and - signs, we find that we first have a
run of 1, then another run of 1, and then a run of 4, next a run of 2
etc, for a total mumber of 12 runs. This total mumber of runs which ve
will call u'is often a good indication of a possible lack of randomness.
For example, v would equal 3 if the twenty elements of sequence (II)
were arranged as follows:

(III)  +H+++ -+t

This could mean that we have too few runs, a total number muqh smaller
than that expected under the randomness hypothesis. In another example,
U = 18 if the twenty elements of sequence (II) were arranged in some
alternating or almost slternating pattern such as:

(1v) ottt et et et e e—

This probably means that we have 100 many runs, & mumber much larger
than we could expect by chance. In either of the last two illustrations
we probably would reject the hypothesis of randommese.

In order to determine whether U, the observed total number of
runs, is too few or too meny, let us consider an arrangement of n, letters
or symbols of one kind and n, letters or symbols of the second kind. If
we agssume that this sequence is a random semple from a given populationm,
it is possible to obtain the u@liu distritution of the variable V-
for repcated random arrangements by the laws of probability. These
probabilities have been used to construct tables which enable us to
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test whether a sample value of J° is unusually small or large. The following

are portions of tables complied for several levels of significance which
enable us to make exact teste vhen n; and n, are small (less than 20):

TABLE I-—~Critical values of s in the Runs Test for U025 and

V975, (Ref. 6)
n ;
a, 2 19 12 14 16 18

3 3 3

3 -7 7 7| 7 4 7 7
4 5 5

5 10 11 1 1 1 11 1
6 7 7

8 13 14 15 15 16 16 16
' 8 8 9

10 15 16 17 18 18 19
9 9 10

12 18 19 20 20 21
10 19 1

14 20 21 22 23
1 1 12

16 22 24 2%
8 12 13

25 26

20 4 -

The values listed are such that a number less than or equal to the

U7 g5 Value (in the upper left hand corner of each rectangle) will ocour not

more than 23% of the time; and a number greater than or equal to v~
value (in the lower right hand corner of rectangle) will ocour not more
than 2.5% of the time,

975




Emample (1):

Suppose we have the following set of times between fallure
of a certain electronic equipment: 31, 27, 37, 41, 32, 36, 28, 23,
41, 30, 37, 24, 19, 26, 39, 35, 25, 28, 40, 23. We wish to test the
randomess of this sequence of observations at the 5% level of sig-

nificance.

Salutdon:

As shown on page 3, the median of this sequence is 30.5.
Designating a mean time between failures above the median by + and mean
time between failures below the median by -, the‘ above sequence becomes:

+otttectet eeet et .

The total mumber of runs in this sequence is U = 12. The hypothesis

Ho that we wish to test is that +'s and -'s ocsur in random order. The

alternate hypothesis H, is that the order of +'s end -'s (or the total

pumber of runs) is not random. We use a2 two tail test sinee we cannot

.-,"-:,'_;-predict the direction of the deviation from randomess. 1In t}:;j.a case,

‘»n1=n2=10 and the V" =12, From Table I, we see that the number 12 lies
between U 0256 and U~ 975=16 and therefore we do not reject the hypothesis
of randomne,;s at the 5% level of significance.

| Table I can be used when n, and n, are equal to or 10780"3&)&‘!)-

' 20. More extensive tables are available but i has been shown that if
n, end n, sre greater than 10, then the sampling distribution 6f U is

' a.bproximte]y normal with ,tixe mean and standard deviation given by the

;. 'following: '
. I 5
- (8) /*" T ngm, +

. 2 2a.n (2n;, -n,-n )
@ O = oL ey



Example (2)
We wish to test the randommess of a sequence of 57 observations
if n =25 and n, =25 and the number of runs is 17, at the 5% level of

significance.

Selution
Substituting in formulas (A) and (B) give:

P
2 1 1 = 12.2 =(3.
§r = izsoo§ 5495 22 (3 )

(C) The formula

- - «
Z= L—,ﬂ—
'l
tells us the number of standard deviations a particular Z is from the mean.

Substituting in this formula (C) we obtain

—=M=i = -
2=-55 =35 =26

Since, in a normal distribution, 95% of the caseslie between -1.96¢
and +1.966" from the mean, we reject the hypothesis of randommess. In
particular 26% (1.96) (3.5) or 26+ 7 is the region of acceptance of the
hypothesis of randomness at the 5% level.

The runs test can also be used to determine whether or not two
random samples are from populations having the same frequency distribu-
tions. This is useful in testing whether or not a modification or a re-
design of equipment has resulted in a significant improvement. The
following examples will illustrate this technique.

Example (3)

Suppose 8 observations of the times to failure of an equipment

have been recorded (sample A) and after a redesign, 10 new measurements



are made (sample B):

(A) 23, 32, 51, 43, 45, 33, %8, %7

(8) 38, 27, 47, B, 40, 55, 61, 49, 43, 52

Is this apparent improvement [; mean of 40.3 in A to a mean of
45 in B/ a significant ons at 24% level?

Solutdon

We first order the 18 observations of samples A and B into a
single sequence according to size. We order by a random device those
observations which ocour more than once. [En alternative method is to
" break the ties in all possible ways and note the resulting value of 3",
If all these valves of \y produce significant results or all values of J—
produce results which are not significant, then the ties present no
difficultyj We underline the observations from Semple A to preserve
their ideptity when combined with the observations of sample B:

23, 27, 2, 23, 3, B, B, 40, 43, 43, 45, 47, 49, 51, 52,
55, 58, 61

This arrangement has 12 runs. The hypothesis being tested
is that the two samples A and B have the same distribution (that is,
the redesign has resulted in no improvement). A signifiocant improve-
ment wquld result in very few runs. This is because in the single
ordered sequence, s definite improvement would mean that the majority
of the measurements in semple B would fall in the right p:rtion of"
the sequence and thus reduce the mumber of runs. This indicates the
use of a one~tailed test. We can use Table I at the .025 level. We
see that, for n,=8 and n2'=10 and U™=12, from this table that 12775 and
therefore we do not reject the hypothesis. The hypothesis would be
rejected (indicating a definite improvement) only if y” were less than



or equal to 5.
Exaxplo (4)
Same as example (3) with samples A snd B as follows:
(A) 12, 25, 43, 19, 24, 46, 18, 44
(B) 29, 11, 49, 56, 61, 36, 58, 53, 3B, 72, 53, 64
sSolution
The combined sequence ordered according to sise is: 11, 12,
18, 19, 24, 25, 29, 36, 3B, L3, Lk, 4B, 49, 53, 55, 56, 58, 61, 64, T2
Here n1=8 and n2=12, and U=5. From Table I again, we note

that 5€ 6 and thersfore weé reject the hypothesis of no improvement.

¢) Serial Correlation Test

A second test which is useful for testing the randomess of a
sequence is the serial correlation test. If we are studying a sequence
of observations which are truly random, we would not expect a relationship
between two consecutive clements. The probability that the smallest and
largest elements will be comsecutive is the same as the probebility that
the two largest or two smallest-——or, in fact, any two elements will be
consecutive. Therefore, if we pair each element with its successor and
ordinary techniques of correlation are used, we would expect that perfect
randomness would result in a correlation of zero.

If our sequence consists of the n elements x1, 12, x3,....xi,...xn,
then the successor of X1 is Xz, of 12 is !3, and xi is xi;._1 for 1=1,2,3,...,
n-1 and we also define that the successor of Xn is X,. The pairings of

the two variables X and Y which we are to study are as follows:

X:X1 X2 ....Xi ’h

!: !2 !3 LN ] !1+1 ...0x1
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If the correlation cvefficient is close to +1 or to -1 we probably would
reject the hypothesis of randomness '(aince +1 repregents perfsot positive
correlation and -1 represents perfect negative correlation) and if the
correlation is zero or near sero, we probably would sccept the hypothesis
that the sequemce is random since this would indicate no or almost no
relation between X and X 1. It is possible to obtain a aampling dis-
tribution of the serial correhtion coefficient by the laws of probability.
Even though the formila for this correlation coefficient iss -

Zxx -nxy

1 .1+
_ ixd
/( n Sx Sy

‘4t is necessary only to consider:

(o) a_éxx

o7 T i sinee B Ty S and Sy are unchanged AR

.f various pervmtatione

(E) MR = -l‘;:r-z md

e
§. .522"34* 1 =45 S *"‘313 =28, 2.
R=pf 552 + = Txﬁn o-2) A Ay

(F)
(G) HhereSK Xx+x§+ veu xK
(H) The formula Z = —b’lﬁ givea us the number of aundlrd
deviations a particular serial correhtion coefficient is from the mean '
and therefore will ensble 'uu to reject or accept the hypothesis at a

given level of confidence. As n becomes larger thé computations involved
become laborious. Hovever, modifications, as will be illustreted in
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example (6) below, often vill simplify these computations.

Exazple (5)

Using the serisl correlation coefficient method, test the
folloving sequence of 12 members for rendommess:
5,17, 18, 8, 19,13, 9, 1, 3, 16, 11, 2 at the 55 level of significance.
Solution

The given sequence produces the following peirings:
xt 5 17 18 8 19 13 9 1 3 16 11 2

y217 18 819 13 9 1 316 11 2 5
n

We first find R=£ Xy o Xyyq T (5) (17) + (17) (18) + (18) (8) + .... +
i-t

(2) (5) = 1319

Then, using formula (G) we find S,, 8, 8, and 8,3

3y 4

S, = SHITHISH... +2=122

Sy (5% (172 (18)%... .+(2) %1704
5, = (%1% (18) ... +(2) 26,630
s, = (5)4+(17)%+(18)%+. .. .+(2)*=4 38,936

2
Now (E) gives /ln = m’-ﬁﬂgﬁen% and (F) produces:

(R=/xzu4.$gm » (129002206 _ (11992

6r= ‘/ 224,062 + 1,228,290 - 1,435,204

§ R= 1/17,w8 = 13

and finally:

z= B-Mp = 1319-1198 = .93

P 131

At the 5% level of significance, s 27%1.65 is required to reject



the hypothesis and therefore the hypothesis of randomness is acoepted.

Exagple (6)

Again, using the serial correlation technique, we wish to test,
at the 5% level of significance, the following sequence for randommess:
6.7" 6072’ 6077, 6-79’ 6-75' 6-80. 6082’ 6.88' 6-92’ 6089 )

Selution
Since the result of the test is not influenced by adding the same

gonsttnt to.each term of the aequaucle'pi: by mlt_ip};ying each tem of the
géduence by the same constant, we add ~6.80 and then rmltipl'fyvrj e.c’p term
g ..of the sequence ty 100 to produce to following simpler soquen.be’xf =6, -8,
a 13, 1, -5, 0, +2, 48, +1‘2, +9. The "_o'bluti.on nov follows as in the

preceding exasple : ""."}‘“9'..;;.-_ ) l'
K -6 B <3 -1 -5 40 42 48 +12 49
¥ 49 -6 8 =3 -1 -5 0 42 +8.+12

= (=6)(+9)+(-8)(-6)+(=3)(-8)+....+(+9) (12) = 26
8,=-6-8-3-1+.....49=8
8, = (-6)% + (-8)7 + (-3)%+ ... +( 9% = 428
8,= (-6)3 + (-7 + (-3 + ... +(9)? = 209
8, = (<€)% =+ ()% + (0)* + .. +( 9)% = 77,508

AR = “:‘(2’5 = -40.4

Sr= [USEE . QI8 _ ()% -

SR= \/16186 + 969 -1,6 =
Sr= [15,523 = 125
again, firally

- 2A&HM0.4 _ 286.4 _
Z= = T12% 2.3
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Therefore, since the probability of obtaining an R of this size or
greater is approximately .011, we reject the hypothesis of randommess.
When we correlate each member with its successor as in the above
‘problems, this is known as serial correlation with lag 1. The test is
applied in the usual manner if any other lag k is used.

Example (7)

Solve problem (5) using the runs technique

Solution
In this problem the median is 10. Using a + sign to indicate an
element above the median and ~ sign to indicate an element below, the
sequence becomes:
B o e
and U’, the number of rums, is 7. Using Table I with n, =n, = 6, we see
that 3{7< 10 and therefore we accept the hypothesis of randomness at 5% level.

Exgpple (8)

Solve problem (6) using the runs technique.

Solution

It is obvious that here the first 5 terms are sbove the median and
the last 5 terms are below the median. Thus the sequence becomes:

et and VU = 2

From Table I, we see that U"= 2 does not fall between 2 and 9.
Therefore we rejeot the hypothesis of randommess.

It is clear from the last two examples that the computations involved
in the. serial correlation test are much more involved than those for the
total runs test. For large n, the condition of normality is reasonable,
and then the serial correlation test may be more reliable.
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2. Some Statistical Decision Theory

a) Definitions and Basic Principles.

A statistician, a technician, or any experimenter who makes
observations and measurements is finally faced with the problem of making
a decision on the basis of data available (usually incomplete). He may
have to decide between the acceptance or rejection of a given hypothesis.
In sequential testing, there are three possible decisions he might make,
namely: accept, reject, or continue testing. He may wish to estimate
the mean life to failure of a piece of equipment on the basis of the
results of an experiment., Or in other words, he must meke a decision as
to which element Xo of a class X should be adopted as the estimate of the
true (but unknown) value of the parameter. These three familiar statistical
problems can be considered as special cases of the general decision problem.

Principles must be applied to aid in meking the decision. In
any particular problem, the principle which will guide the decision
making will depend on the nature of the problem and often will involve
numerical constants which can only be estimated. A. Wald (Ref. 14)
developed the minimax principle, that is the primnciple of seleoting a
rule which minimises the maximum risk which could occur. This means
that the investigator anticipates the worst and acts accordingly. This
is frequently a wise action but has besen criticized as being too
pesaimiati_.g,' and several useful modifications of the minimax theory
have been présented. A second method originated by Bayes and used by
LaPlace is to assume that the a priori probabilities are all equal,
unless evidence to the contrary is available. According to the Bayes
principle, we choose a decision function (defined later) so as to

maximaze the average gain. A further discussion of the various principles
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of choice will be found in section 4.

Staustiical decision theory and the theory of gemes are closely
related. Many statistical problems can be regarded as a two person game
in which the statisticien plays against Nature. As an aid in making a
decision, the statistician performs an experiment whose outcome is 81(1=1 925+ 000)
The set of all such possible outcomes will be called S, the sample space.
The set of all possible actions (or strategies) we call A. A may consist
of only two elements a,, and a, as in the case where the decision is to
nccept or reje\";t 8 hypothesis. A may contain three elements 845 8, and a,
as in sequential testing -wnen the decision is to aceept, reject or conti.nue

', testiné. Also A may contain an infinite mxmber of elements as 1n the case

“of point or 1nterva.1 estlmation. A statisticnl decision fnnction, d(s).sa

5‘f81a rule associating a possible action, a, with each posei,ble. \dut.co,me S.
" For emmple, we wish to estimate the unknown mean life /u of & popnlation

.-.v’_usmg e random sample of size a from ths population. We can cona'

»’;.:‘that a possible action 1s a statement which aays that the mean 401’
-".pooulation is the mean X = -z X where one outcome is 8 = (11;.'8,‘;"13 Xn).

._-Here d(S) X. A second enmple would" be the teat of a }vpotheais H s/l 40

hich requires ‘the rejection of the hypothesia if xél,s and the @ 'ept.ance of

t :’"hvpothesis if 171.5.4 Hore we have two elements :l.n A namew’ the
2 (Thie
is an arbitrary Tale whichcould be moditied readily to include a Brd action,

continue test,_;lng‘.“) Here d(s) = a, it = (X, X000 X)) and x =5 1% x, 545,

ré'jection of ‘the hypothesisv and a, the .cceptance of the !wpothes&;s.--

and d(s)za, 1f S.a (X, X, ..., X) and x;~£ X7 45
1=y
Considering the above two examples as a game, statistician versus mture, the
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decisions arrived at are often called pure decisions since the strategies
or actions taken are clear-cut, that is for s given ocutcome a definite
action is prescribed. In other games, the decision may depend on some
randomising device to select’ an action (decision) from an existing
probabil%ty distribution over a set of possible decisions. Such decisions
are cnlléd mixed decisions. In the game of Parchesi, the decisions are
of the mixed variety since the decision as ® which marker to move

depends on the roll of e pair of dice.

b) Utiliy

The major problem of the statistician is how to choose between
alternate decision functions. Associated with each end result facing
the decision maker is a mumerically measured value called utility and
in general he should make those deoisions for which his end results would
have as large a utility_n' possible. This criterion mey not necessarily
alvays be measured in dollars but other valuable considerations such
a8 time, reputation and even life itself may be applied.

Let us suppose the existence of a parameter spacef) consisting
of elementsu)i : 1=0,2,3..M For each W there is a corresponding
probability distribution on S, the sample space. For a fixed W , @
certain action & /a=d(s)/ will yield sn end result £=£ (“-}"J)Nov let
E dewote the set of all possible end results e. Then Wand d together
determine a probability distritution on E. If the experimenter can
determine which of two probability distributions he preferg, then a
" utility can be assigned to each of these. Therefore eachwand d will
have as utility, the utility of the probability distribution which they
determine. A second way of assigning a utility to a pair, (d,¢2) is
possible if a precise numerical loss L resulting from a given action
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oan be determined. This expected loss is often called the risk, regret
or inutility.

The preceding utility theory 1:3 obviously very genex"tl in
character and it is often extremely difficult to determine a utility in
these ways.

A simple 111uatrﬁ10n of how numbers may be assigned to basic
alternatives is given by Savage. He proposes the following prol;lem.

On a given occasion a person faces the decision of whether or not to
carry an umbrella. For simplicity, only two possible states of nature,
future rain and future shine are considered. The possible consequences

are given by this table:

State
Aot Rain Shine
inconvenience and | inconvenience
wvet feet and slight
Carry embarrassment
Don't Miserable bliss
Carry dren=hing unalloyed

In other situations, the possible consequences of each act,
in each state, could be measured in dollars and in the preceding rain-
shine example, the following "income matrix" might be reasonable:

State
Act Rain Shine
Carry 4 5
Dontt
Carry -10 10
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¢) The Pay-off Matrix

The two person game mentioned in the preceding section can be con-
sidered as the product of space X, all possible strategies of player I,
and of space Y, all strategies of player II. We define R(x,y) as a
function which gives the outcome r for each pair (x,y), x belonging to X
and y belonging to Y. In the theory of utility it has been shown that
vith each r of our outcome space R there may be associated an M (x,y)
_odlled the pay-off function which may be regarded as the monetary gain or
"itility" to player II (the decision maker). In the theory of. ,g‘u'xea there
;a‘ a special class of games called twd-peraon sero sum games.“' Tﬁis is a
* game in which the total payeff to the tuo players is Zero 8o that Af the
pay-off to ialayer IT is M(x,y) then the payeff to player I is -M(*,y). .

Our game can be considered as a matrix (Mij) in which the colums
are the stmtqgiés of the first player and the rows the stra_,ie’giea of

the second piayer:

1
R TR TR

oo Yoy My My
yzll'Mm'Mzzuaz Cee M,
LT My My My e My

B ¢ SR S .
In ¥m
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Independently, the first player selects the ith column and at
the same time the second player selects the jth row. The pay-off to
the second player is the entry Mij of the matrix. The final choice of
a decision function must be based on some reasonable principle of choice.
Therefore, before illustrating the pay-off matrix, principles of choice
will be discussed somewhat further in the next section.

d)  Principles of Choice. T

In section (a) reference was made to several principles vhich
c.auld aid the statistician in mlking a decision. Suppose for a given
problem we have been successful in assigning the utill:lty U(d;®) to each
-: “decision function d for eachc in_n___ Then, as prev_ioualy mentioned,
the most conservative principle of choice is the minimax crit;erip':p. Here
ve choose the decision function so that the min U(d;cd) is the greatest.
We will illustrate this principle by devising a pay-off matrix n's‘ Qx-

‘plained in the preceding section.

5 R %o

wls [o |4 |5

v, 0 3 6 3

¥, 2 3 3 2

% 1 4 3

The minimax principle states that we should choose thé rov for
vhich the least possible gain is & maximum. In the four rows in the
pay~off matrix above, the minimum gains are 0,0,2,1. Therefore we
choose atrategy Yy since regardless of what hsppens our minimum gain
will be 2 units.
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The sscond method mentioned in section (a) was the Buyss principle
or as it is often called "the principle of insufficient reason." This
c_rj,t,grj,on asserts that if one is "completely ignorant" of the status of
nature, ve assume that the probabilities of all are equal and we choose a
strategy ybich maximises the average gain. In the pay-off matrix above,

the ‘averags gain (utility) for the four rows are -4 23, 10 4na -3 . There-

fore we choooe Y. .
The' mfnim principle of Wald as previoualy noted is umiu]:y
_;'::,v':peasimistic».s:lnce concentration is mde on the worst possible qoqaequence
- of oach act. A mmber of modifications have been devised to remove this
- "objection and. Burviz in 1951 suggested the selection of a number -

; 'ok (o <o(/.1) vhich he called the pessinisu-optinism index. Fo: each act

{or row) of our matrix let M, be the meximum utility number and. m { the

&

18 a maximum. - When A =0, this is equivliént to Wald's minimax ﬁi;iﬁhciple.

smallest utility numbez:.~ ‘de now choose the row for which c(M

"I:t'i the previous example the four rows give 5, 6, 34 +2(1-ok) =42,
'4'0’\*'1(1-0«) = 3+, Foroh={ the 4 rows would give the values 2, 2, %, %
and % would be the strategy chosen. For o(= %, the results becpme

.g,,‘.,g" g and 5-‘ 80 that yz 13 preferred. And finally, for0(=3/4, \[e have

—5’ R 4 an,d ‘ » 80 that 7, is again preferred. It seems clear that for
anya()% 1'2 is pret'emdj. o
Several other modi_f-’icationa involve the use of inmutility, risk
. oy regret, Savage suggested that we minimize the maximum regret where
the regret is defined as the amount that must be added to the utility to
equel the maximum utility pay-off. Or it can be also described ul the

difference between the pay-off for his actual strategy and the pay-off he



would receive if he knev in advance the state of nature (Player I strategy).
Symbolicallyrb”:ﬂx Mij-ﬂu. Again, using the previous matrix as an
example, the regret matrix associated with it is:

e T !
7 0 3 2 0
Y, 5 o) 0 2
vy 3 0 3 3
| 1 2 1 2 2

Here we have maximum regrets for the four rows 3, 5, 3, and 2.
Therefore we choose the act vhich minimiges the maximum risk (regret)
which is y 4 '

The above example illustrates that the use of four different
principles of choice lead to four different decisions regarding the choice
of strategy. The minimax principle indicates the use of strategy Y3 the
Bayes principle leads to the choice of ¥q3 the modification developed by
Hurwicz suggests the choice of y, a8 the preferred strategy; and finally
the regret principle indicates the use of strategy y 4

e) BRayes Estimates, and Sequential Decision Problems

In order to estimate a parameterc), the statistician performs an
experiment with outcomea/ S1 vhere S 13, as previously stated, the set of
all possidble outcomes under consideration. An event S s & subset of S \d.ll'i.
have a probability depending on ¢O:

P (8,) = é P (s)

s€s,
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Then the decision function d(S)=a enables us to select an action a from the

set A of all possible actions. If we now assume that there exists a numeri-
cal loss function L(d, w), then the expected value of this loss will be

de_ﬁned bys
M(d,00) =4 L (d,0) PLI(8)
Z

where d=d(S) and the statistician obviously tries to minimize this expected
loss. An estimate which does minimige the expected loss is called a Bayes
estimate.
' In the case of the binomial distribution where:
© = the probability of success tased on the observation that the
. .n trials, and |
P(x) = C_. 6%(1-8)"* .
'A\(8) do = probability that © ies in the interval & tg +de
fn(x)_ = our estimate of the parameter & .

N ) 2 '.. L
KE {fn(x)-o Sz = K én {fi('i‘)—e% P (x) /K a constant/

A X0 . . .
t = expectation of loss

1t 1e shown (Ref 1) that:
1 2

M) L= | XE §rn(x)-eg N (e) as .
-]

The & that minimises L in equation M is the Bayes estimate.. '
A well known testing procedurs is Wald's sequential pféhéﬁ';lity
" ratio test. After each observation the statistician must make a decision
whether to continue to make observations or to take final action (usually
accepting or rejecting a hypothesis). Let us suppose that we have to
'decide between two hypotheses H, and H, of which the a priori probabilities
afe g and 1-g ‘respeétively'. We assume that there is no loss in accepting
the true hypotf:esia, and a loss [12 if we accept l!2 when H1 is true, and
a loas off21 if we acocept H, uhonﬂz is true. If g is small we of course
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scoept H, since the risk R,= l‘ o6 18 smll. Also if g is large, 1-g is
emall, and ve similarly accept H, since the risk Ry= 121(11), is small.
In order to determine the sise of g for acceptance of Hz, thg whole

interval o0&z 1 is divided into three subintervals D, L1,
o g g 1
vhere I,(osg=g), Iz(§<g<i) and I, (#=g<1). Then if g belongs to I,

ve continue to make observations, but if g belongs to I1 or 13 we stop
and take action: accept "Hz if in I1 and accept H1 if in I3. If we take
n obsc-vations, the a posteriori probability of H1 is given by Bayes

&g = 3 im T (-e) Pl

vhere P in is the probability of having n observations under B1 and P2n

Theorem (Ref. 5):

the probability of n observations under 112. On pp. 226-230 in Vol. 17,
Econometrica, general formulas are developed for g and g and also for a
number of special frequency distributions. In all cases, however, it is
very difficult to compute the operating characteristics involved in the
equations for g and g. In particular, the losses & 1o and ,(21 can only
be guessed at. In the case where the hypotheses H, and H2 do not differ
much from each other 't.heA approximations developed by Wald give fairly
close results.

f) Critical Comments on Utility Theory and Principles of ;Choice.

Utility theory (as stated before) is at the present still very
general in charscter. The constructing of the utility function U(d;cd) is
extremely difiioult and highly subjective. However, even though some
statisticians assert that the theory is doomed from a practical standpoint,
our feeling is that it has given many new insights to statistical decision
theory and offers possibilities for great usefulness in the future. The
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first obvious diffioculty with utility theory is that numerical values can
very seldom be assigned to the comsequencss of decisions. This usually
rests upon an infinity of paired comparisons. Some statisticians have
tried to avoid this difficulty by making a finite or a relatively few
paired comparisons. Verification then is based on these as well as on
the assumption that the utility function exists and is linear.

A number of authors have developed axiom sysiems in order to
have both a plausible set of consistent requirements based on idealised
human preferences ;s well as a procedure for proving the validiti of
the utility assignments. A second difficulty arises as a result of these
axiom systems since the preferences or paired comparisons almost never
satisfy the stated axioms.

The principles of choice discussed earlier were Walds minimax
principle, Bayes principie, and modifications by Hurwicz and Savage.
Serious criticisms, objections, and drawbacks have been cited by many
statisticians to all of these. In oriticism of Walds minimax principle
we quote from Savage (Ref. 12): "There is a general principle for finding
minimax actions when the number of states and mixed actions is finite,
but it leads in general to very extensive computations and is not
applicable at all when either of these numbers is infinite. Devices
for solving special classes of minimex problems are therefore mach sought
after, and even now many of the most commonplace situations of statistics
lead to difficult minimax problems. Few, if any, new minimax solutions
of immediate practical importance have yst been found." A secomd serious
objection to Walds minimax principle (as stated before) is based on

extreme pessimism, that is that we assume nature to be in the worst
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possible state.

The Savage modification, minimising the maximum regret, has been
eriticized by Chernoff (Ref. 5) as follows:

"Unfortunately, the minimax regret (risk) criterion has several
drawvbacks. First, it has never been clearly demonstrated that differences
in utility do in fact measure vhat one may call regret (risk). In other
words, it is not clear that the "regret" of going from a state of utility
5 to a state of utility 3 is equivalent in some scnse to that of going
from a state of utility 11 to one of utility 9. SQcondly, one umay construct
examples where an arbitrarily small advantage in one state of nﬁture out~
weighs a considerable advantage in another state.”

Objections to the principle of insufficient reason have been
many. The first criticism is that the principle is extremely vague and
may lead to contradictory results. A second objection is that the
principle is not strictly applicable for a person who has had any ex-
perience with the problem at hand since utility theory depends on a series
of preferences. A third criticism, much like the first, 1is that'. this
criterion is highly subjective. For example, if we are faced with a
real problem in decision meking, we must firat list the mtually ex-
clusive states of nature. The objection here is that many such lists
are possible, and therefore will in general give different results.

Finally, the fourth and last principle of choice discussed was the
Hurwice modification of Wald minimax principle in an effort to meke it
less pessimistic. The major objection to this modification is that it
involves the selection of an oA (considersd as measuring the optimism of
the statistician /player II/in a game against nature /player 17 which
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is highly subjective and vague. A oriticism which applies not only to
‘ the lmurvios ch nodification but also to the other principles of choice
discussed is that they depend on some notion of complete igrorance. In
reality, however, the statistician usually is not in complete ignorance
of the true state of nature but has some i{dea of the various

possibilities.



CONCLUSION '

Since most methods used in atatistic; wvere derived upon the
basis of random sampling, 1t is essential that this condition be
satisfied in order that the results obtained by valid. In particular,
when the tests involve sequences of observations ordered with respect
to time, some test for randommess should be applied before methods based
on randomess are used. The Runs Test, discussed and 1llustrated in
section 1b, is one of the easiest to apply. The computations are simple,
the test is nonparametric (knowledge of underlying frequency function
not necessary), and can be used for both small (see Table I) and large
samples. “The Serial Correlation Test, 1c, involves laborious c&mputations‘
for large n but for smaller n the arithmetic is not too time consuming.
It should be pointed out that in the case of nonparametric tests there
is no established theory to determine whai constitutes a "besf" test.

The construction of utility functions and applications of decision
theory is difficult and subjective. However, we conclude that:

(1) A subjective risk function or decision function may well
be an optimum one if the individual designing it has knowledge of what
is important and vhat is not important to the purpose of the test. In
the particular instance of a risk function applied to a reliability test,
the Air Force (consumer) should have the prerogative of chmshg which
parameters of a risk function are most important and of designing the
function to suit these.

(2) While decision functions in general are diffioult to meni-
pulate due to the lack of a common denominator for different con-

sequences, in the particular case of a decision function for reliability
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test purposes it may be found to be less difficult. This is due to the
fact that the majority of actions involved may be broken down to tut two
prime factors, time end money, and the definition of the relationship
and relative importance of those should be the responsibility of the
consumer.

(3) It is conceivable that a decision funotion tailored to
reliability tests will be an eventuality. However, befors this eventuality
may be realized, more knowledge of decision functions is necessary. At
this time little is known about possible applications of decision functions,
or their practicality of use. This area first came into prominence about
15 years ago, and significant work was accomplished. However, since that
time little more has been accomplished in this area than the study of its

more obvious fundamentals.
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